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Abstract

An Ensemble Kalman filter (EnKF) is used to assimilate airborne measurements
of 1.4 GHz surface brightness temperature (T5) acquired during the 1997 Southern
Great Plains Hydrology Experiment (SGP97) into the TOPMODEL-based Land-
Atmosphere Transfer Scheme (TOPLATS). In this way, the potential of using EnKF-
assimilated remote measurements of Tg to compensate land surface model predic-
tions for errors arising from a climatological description of rainfall is assessed. The
use of a real remotely-sensed data source allows for a more complete examination
of the challenges faced in implementing assimilation strategies than previous stud-
ies where observations were synthetically generated. Results demonstrate that the
EnKF is an effective and computationally competitive strategy for the assimilation
of remotely sensed T'g measurements into land surface models. The EnKF is capable
of extracting spatial and temporal trends in root-zone (40-cm) soil water content
from T'p measurements based solely on surface (5-cm) conditions. The accuracy of
surface state and flux predictions made with the EnKF, ESTAR Ts measurements,
and climatological rainfall data within the Central Facility site during SGP97 are
shown to be superior to predictions derived from open loop modeling driven by
sparse temporal sampling of rainfall at frequencies consistent with expectations of
future missions designed to measure rainfall from space (6-10 observations per day).
Specific assimilation challenges posed by inadequacies in land surface model physics
and spatial support contrasts between model predictions and sensor retrievals are
discussed.
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1 Introduction

The steady accumulation of evidence suggesting that the accurate specifica-
tion of root-zone soil moisture in numerical weather prediction models can
improve seasonal weather prediction for certain locations on the globe (see
e.g. [25]) has driven efforts to develop observational and modeling capabili-
ties for soil moisture at continental-scales. Large-scale observational strategies
have focused primarily on the potential of spaceborne microwave radiometry
at low frequencies (< 10 GHz) to infer surface (2-5 c¢cm) soil water content.
Results have been encouraging over lightly vegetated portions of the globe
such as the Southern Great Plains (SGP) region in the south-central United
States. The operational retrieval of soil moisture from space is expected to
begin in earnest with the deployment of the 6.925 GHz Advanced Microwave
Scanning Radiometer (AMSR-E) in 2002 and the 1.4 GHz Soil Moisture and
Ocean Salinity (SMOS) sensor in 2005. Despite these advances, the utility of
spaceborne soil moisture retrievals is hampered by several factors including:
poor spatial resolution, limited vertical penetration depths, and low accuracy
over heavily vegetated regions.

Recent modeling advances have centered on the Land Data Assimilation Sys-
tem (LDAS) project which demonstrates the feasibility of operationally mod-
eling land surface water and energy balance processes at continental scales
using forcing data obtained from both in situ and remote sensing sources. Soil
moisture assimilation strategies constitute a logical extension of these advances
by providing a strategy for efficiently combining soil moisture information de-
rived from observational and modeling sources and, ideally, overcoming the
limitations of each. For instance, assimilation of surface brightness tempera-
ture (Tz) measurements into physically-based models of near surface heat and
water transport can potentially increase both the effective vertical penetra-
tion [18] and horizontal resolution [34] of spaceborne radiometers. Conversely,
sequential microwave brightness temperature measurements can aid land sur-
face modelers in soil hydraulic parameter selection [3,27] and mitigating errors
arising from poor model initialization [13].

Persisting concerns about its limitations, however, has led some to question
the overall role of microwave soil moisture remote sensing in the study of land
surface water and energy balance processes. An alternative strategy is to place
additional emphasis on the remote observation of global land surface model
forcings (e.g. precipitation, surface meteorology, and solar radiation) and de-
velop ‘open loop’ modeling capabilities that operate without assimilated in-
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formation. Comparisons between open loop and sequential soil moisture/Ts
assimilation strategies have been made in a preliminary manner by [26]. How-
ever, a complete assessment requires actual remote measurements to realisti-
cally incorporate challenges arising from the interpretation of remotely sensed
data and a viable assimilation strategy to combine model predictions and
remote observations in a sound manner.

A variety of strategies for the assimilation of Tz measurements into land sur-
face models have been introduced recently. The most effective strategies are
based on either sequential assimilation using some variant of the Kalman filter
algorithm [18,29] or non-sequential variational smoother approaches [20,35].
See [33] for a complete review of procedures. Of special interest here is the
Ensemble Kalman filter introduced by [14] and applied to the problem of
assimilating synthetically generated surface brightness temperature measure-
ments into a land surface model by [36]. As noted by [36], the EnKF approach
is attractive for the Tz assimilation problem because: (i) its sequential nature
is well suited for assimilation of real-time observations into operational mod-
els, (ii) it is easy to implement for land surface models and does not require
the calculation of an adjoint, (iii) the Monte Carlo nature of the ensemble
generation allows for any statistical form or time/space correlation in error
structure, and (iv) it does not require the computationally expensive dynamic
updating of error/covariance information.

The purpose of this study is twofold. First, to extend the EnKF methodology
described in [36] to a real data case involving the assimilation of remotely-
sensed Tz data into a land surface model validated against independent ob-
servations. Second, to assess the ability of the EnKF to compensate predictions
of surface latent heat flux and root-zone water storage for errors associated
with the use of only climatological rainfall data. Such an assessment allows
for comparison of the relative merits associated with land surface observations
from a microwave radiometer versus precipitation estimates from a spaceborne
radar.

2 The Ensemble Kalman filter

The Ensemble Kalman filter (EnKF) is based on the generation of an ensem-
ble of model predictions to estimate the error/covariance information required
by the standard Kalman filter (KF) for the updating of model predictions
with observations [14]. All error information is contained within the ensem-
ble, avoiding the computationally expensive explicit propagation of the error
covariance matrix.

The EnKF can be generalized using a state space representation of prediction



and observation operators. The development and notation presented in this
section follow the discussion presented in [36]. Take Y (¢) to be a vector of
land surface state variables at time t. The equation describing the evolution
of these states, as determined by a potentially nonlinear land surface model f,
is given by:

dY
—=f(Y,w 1

ar ~ Fw) 1
where w relates errors in model physics, parameterization, and /or forcing data
and is taken to be mean zero with a covariance C,,. The goal of the filtering
problem is to constrain these predictions using a set of observations which are
related to the model states contained in Y. Let the operator M represent the

observation process which relates Y to the actual measurements taken at time
tkl

Ze = M(Y (), vie) (2)

where v represents Gaussian measurement error with covariance C,;. The
EnKF is initialized by the introduction of synthetic Gaussian error into initial
conditions and generating an ensemble of model predictions using equation
(1). At the time of measurement predictions made by the ith model replicate
are referred to as the state forecast Y!. If f is linear and all errors are additive,
independent and Gaussian, the optimal updating of Y by the measurement
Z is given by:

YU = Y4 Ky(Zi — Me(YY)] (3)

and:

K =[Cym(Cum + Cv)_l]t:tk (4)

where C); is the error covariance matrix of the measurement forecasts M (Y?!)
and Cy ), is the cross-covariance matrix linking the predicted measurements
with the state variables contained in Y. All covariance values are statistically
estimated around the ensemble mean. Here Yir signifies the updated or anal-
ysis state representation. To ensure the Monte Carlo simulation converges to
the same error predictions made by the standard Kalman filter, each assimi-
lated measurement Z; should be perturbed with synthetic measurement error
consistent with the error characteristics contained in C, [2].

Unlike the standard Kalman filter, the EnKF does not make use of a dynamic
equation to explicitly update either C;; or Cy,,. Updating is based on a gain
function K derived solely from information contained within the ensemble.



Final state and measurement estimates are calculated by averaging predictions
made by model replicates within the ensemble. While application of the EnKF
does not explicitly require model linearity or Gaussian errors, the filter will
cease to be optimal if either condition is not met.

3 Application during SGP97

Analysis was based on data collected during the 1997 Southern Great Plains
Hydrology Experiment (SGP97) run within central Oklahoma between June
18 (Julian day 169) and July 18, 1997 (Julian day 199). During SGP97, L-band
(1.4 GHz) surface brightness temperature observations were acquired with the
electronically scanned thinned array radiometer (ESTAR) flown aboard a P3B
aircraft. Usable 800-m Tz imagery was obtained on June 18, 19, 20, 25, 26,
27, 29, and 30, and on July 1, 2, 3, 11, 12, 13, 14, and 16. Ground-based soil
moisture sampling was concentrated at three study areas within the transect
imaged by ESTAR: the Central Facility area, the El Reno area, and the Little
Washita Basin. See Figure 1a for transect and study area locations and [23] for
a complete description of SGP97 data collection and processing techniques.

Surface water and energy balance modeling was performed using the TOPMODEL-
based Land-Atmosphere Transfer Scheme (TOPLATS) [15,31]. The Land Sur-
face Microwave Emission Model (LSMEM) [12] was used to produce estimates

of 1.4 GHz surface brightness temperature (75) based on TOPLATS surface
state predictions. In this way, an ensemble of T predictions were calculated
using a simple Poisson model of daily precipitation accumulations parameter-
ized with climatological rainfall values. The surface state variables associated
with each ensemble member were then updated by ESTAR T measurements
using the EnKF framework reviewed in Section 2. The following subsections
describe components of this methodology in greater detail.

3.1 TOPLATS modeling

The TOPLATS model version used was identical to that described by [31]
except for the insertion of two additional computational layers in the model’s
soil water balance algorithm. Consequently, soil water balance calculations
were made within four layers: 0-5 cm, 5-15 c¢m, 15-40 c¢m, and 40 c¢m to the top
of the water table. Diffusive and gravity drainage fluxes between layers were
calculated using the numerical approximations presented in [31]. Following



[40], evapotranspiration E was calculated as:

E = Min[ipiETi, Ep] (5)

=1

where E7. is the maximum rate of transpiration (i.e. the threshold transpira-
tion) each soil layer i is capable of sustaining, p; is the fraction of total root
surface area in each soil layer, and £, is the potential evapotranspiration. The
relationship between soil moisture in layer 7 and Ep, was taken from [39,17]
and E, was calculated assuming zero water stress and the Jarvis-type formu-
lation presented in [31]. Soil temperature was calculated at surface (0 cm), 7.5
cm, and 50 cm nodes.

Point-scale TOPLATS results were generated at the Department of Energy’s
Atmospheric Radiation Measurement Cloud and Radiation Testbed (ARM
CART) extended facility (EF) site 13 (36°36’ N, 97°29’ W) near Lamont, Okla-
homa and the National Oceanic and Atmospheric Administration/Atmospheric
Turbulence and Diffusion Division (NOAA/ATDD) Little Washita Watershed
site (34°58” N, 97°57° W) near Chickasha, Oklahoma. The ARM CART EF13
site is located within the Central Facility area and the NOAA/ATDD site in
the northeastern corner of the Little Washita Basin. Land cover at both sites
was classified as grassland/rangeland. Based on typical grassland conditions,
the albedo of both sites was taken to be 0.20 [9] and the roughness length for
momentum transfer to be 2.5 cm [1]. Forty percent (40%) of the root surface
area was assigned to the 0-5 cm soil layer, 30% to the 5-15 cm layer, 20% to the
15-40 c¢m layer, and 10% to be below 40 cm. Parameters describing the thresh-
old evapotranspiration of the grasses were taken from [6,16] and the impact
of environmental factors on stomatal resistance followed the parameterization
given in [31]. Plant heights at both sites were taken from [19].

Leaf Area Index (LAI) values for TOPLATS were tuned to improve latent
heat flux (AE) predictions. The fitted LAI value for the Central Facility ARM
CART EF13 site (LAI=2.5) fell within the LAI measurement range for grass
fields in the Central Facility area (LAI=2.0 £+ 0.6) [19]. However, the LAI
value required at the Little Washita NOAA/ATDD site (LAI=0.75) did not
fall within the observed range for grass fields within the Little Washita Basin
(LAI=1.9 £ 0.2) and must therefore be considered a calibrated parameter.
Following [22], soil texture was assumed to be loam at the ARM CART EF13
site and silt loam at the NOAA/ATDD site. Soil hydraulic information was
available from bore-hole data taken near all ARM CART sites. However, di-
rect incorporation of in situ sampled values of soil parameters led to overly
dry conditions at the ARM CART EF13 site. As a compromise, the in situ
values at the ARM CART EF13 site were averaged with values suggested for
loam soils by the lookup table presented in [32]. Since no bore-hold data was



available at the NOAA/ATDD site, hydraulic parameters suggested by [32]
for a silt loam soil were used directly. When available, surface soil moisture
values were initialized with either gravimetric or soil moisture probe measure-
ments. Initial water table depths, deep soil moisture, and TOPLATS baseflow
calibration parameters were set to climatologically reasonable values derived
from long-term TOPLATS modeling of the region [7].

TOPLATS was also run on a 0.01° grid over the entire SGP97 ESTAR transect
shown in Figure 1 (15,810 computational pixels). At this larger scale, precipi-
tation data was obtained from 4-km Weather Surveillance Radar (WSR-88D)
hourly rainfall products, incoming solar radiation from 8-km Geostationary
Operational Environmental Satellite (GOES) insolation imagery, and other
meteorological data from an interpolation of hourly National Climate Data
Center (NCDC) station measurements. Land cover data was obtained from a
land-cover classification of the region performed by [11] and soil texture data
from the multilayer soil characteristics data set (CONUS-SOIL) developed at
Penn State University’s Earth System Science Center [28]. Surface soil mois-
ture was initialized using ESTAR-derived soil moisture created by [23] on June
18 (Julian day 169). As in the point-scale modeling, initial water table depths,
deep soil moisture, and TOPLATS baseflow calibration parameters were set
to climatologically reasonable values derived from long-term TOPLATS mod-
eling of the region [7]. Soil hydraulic parameters were assigned using the look-
up table presented in [32]. All vegetation present in pixels classified as winter
wheat was assumed to be in senescence and not transpiring. Based on mea-
surements presented in [19], 45% of winter wheat fields in the transect were
assumed to be covered by senescent vegetation which effectively shaded the
underlying soil and 55% were considered to be completely devoid of vegeta-
tive cover. The soil resistance scheme developed by [30] and incorporated into
TOPLATS by [31] was used to model bare soil evaporation at these sites.

3.2 LSMEM modeling

Brightness temperature modeling by the LSMEM was based on surface (0-5
cm) soil moisture and a weighted combination of surface and 7.5-cm soil tem-
perature predictions by TOPLATS. Various components of the LSMEM are
based on previously published algorithms. Its calculation of soil dielectric is
based on [10]. Reflectivity off a smooth surface is based on the two-layer model
described in [38]. The impact of surface roughness is based on [4], and veg-
etation effects were incorporated using the model of [24]. Surface roughness,
vegetation water content, and vegetation structure coefficients were taken from
measurements made during SGP97 and processed by [23]. Vegetation cover-
age fraction was assumed to be 80% and the single scattering albedo off of
the vegetation canopy to be 0.04 for all vegetation types. While both values



are somewhat arbitrary, LSMEM 7T predictions during SGP97 exhibited lit-
tle sensitivity to the specification of either parameter. Soil bulk density values
were based on either ground sampling data (when available) or default values
assigned according to the specified soil texture in the CONUS-SOIL classifi-
cation. No atmospheric effects were incorporated into the microwave emission
model.

3.8 TOPLATS/LSMEM validation

Point-scale TOPLATS state variable and flux predictions were validated using
in situ flux tower data and gravimetric soil moisture measurements made dur-
ing SGP97. In addition, TOPLATS/LSMEM T}j predictions were compared
to ESTAR Tp observations over each site. Due to uncertainty concerning the
georegistration of the ESTAR imagery [23], ESTAR observations were taken
from the spatial average of retrievals within a 3 x 3 pixel window centered on
each site. Validation results at the NOAA/ATDD Little Washita Basin and
ARM CART EF13 sites are shown in Figures 2 and 3 respectively. Compar-
isons to flux tower and gravimetric soil moisture observations are generally
quite good, but discernible biases appear in model predictions of Tz and soil
moisture relative to ESTAR observations. One source of this error is likely the
difference between the spatial support of model predictions and the ESTAR
observations. Conditions reflected by the model may be accurate within a lo-
cal plot-scale (< 100 m) but not representative of microwave emission for the
entire 2.4%-km? window (3 x 3 800-m pixels) from which ESTAR observations
were obtained. For instance, ESTAR estimations of soil moisture over the en-
tire 2.4%2-km? area containing the NOAA/ATDD site are biased low versus
gravimetric samples taken immediately around the flux tower site (Figure 2).
This suggests that the area surrounding the site is locally wet, and has a low
T, relative to the larger 2.42-km? window in which the site is embedded. Be-
cause of georegistration uncertainty, comparisons did not improve when made
between model predictions and the single 8002-m? ESTAR pixel judged closest
to each site.

Shortcomings in model physics can also lead to discrepancies between model
results and observations. At the ARM CART EF13 site (Figure 3) the model
tends to overestimate T5. Some of this overestimation occurs in the immediate
aftermath of heavy rainfall events (see Julian days 178, 181, 182, and 193).
Rainfall accumulations at the ARM CART EF13 site from June 18 to July
19 were at least double climatologically expected levels (>200 mm versus 90
mm). Consequently, one possible contributing factor to the overestimation of
T'g is the presence of standing water in fields recently wetted by heavy rainfall.
Standing water was observed, although not sampled gravimetrically, at the site
during Julian days 181 and 182. The impact of this standing water, and the



inability of the model to represent it, should introduce a high bias in modeled
T predictions. In contrast to the ARM CART EF13 site, model estimates of
Tp are biased low by 13.6°K at the NOAA/ATDD Little Washita Basin site
(Figure 2). Here comparisons to both ESTAR and gravimetric observations
demonstrate that TOPLATS overestimates soil moisture during dry-periods
of the experiment (see Julian days 181-184 and 194-197 in Figure 2). This
overestimation is likely due to the neglect of bare soil evaporation beneath
vegetation by TOPLATS and the accumulated drying power of this process
during the tail end of dry-down events.

A more natural scale to compare model predictions and ESTAR T observa-
tions is at a spatial scale equivalent to the footprint size expected for next
generation spaceborne radiometers. Figure 1b illustrates the division of the
ESTAR transect into 4 approximately 50-km x 70-km footprints. Each foot-
print was modeled by TOPLATS/LSMEM using a 0.01° grid size. Scaling the
analysis up to a footprint-scale overcomes some of the spatial support problems
encountered at the site-scale. For instance, aggregating ESTAR observations
and TOPLATS/LSMEM T3 predictions within the Little Washita footprint
(see Figure 1b) reduces the bias in TOPLATS/LSMEM T3 predictions from
-13.6°K (observed at the NOAA/ATDD Little Washita Basin site) to -4.9°K.

A still coarser scale is obtained by averaging results for all four footprints in
Figure 1b into a single 50-km x 280-km transect-scale value. A comparison be-
tween transect-averaged T values obtained from ESTAR and TOPLATS/LSMEM
modeling is shown in Figure 4. At the transect-scale, LSMEM/TOPLATS
Tp predictions remain biased slightly high. The bias is pronounced during
dry periods of the simulation and likely reflects the continued overestima-
tion of top 5-cm soil moisture by TOPLATS due to the neglect of bare soil
evaporation below vegetation canopies. Despite this bias, independent sur-
face soil moisture estimates derived from ESTAR and the model of [21] match
TOPLATS/LSMEM predictions within a root-mean-squared (RMS) difference
of 2.3% volumetric [0.023 cm?_,_ cm_3]. In addition, RMS differences between
transect-averaged TOPLATS effective soil temperature estimates and those
calculated by [23], using 10-cm Oklahoma Mesonet soil temperature measure-
ments and the method of [5], are small (1.0°K).

3.4  Rainfall ensemble generation

The EnKF was applied to the problem of accurately modeling root-zone soil
moisture using sequential observations of 1.4 GHz brightness 75 and no sup-
porting rainfall data. Between each of the 16 ESTAR T acquisitions during
SGP97, an ensemble of TOPLATS forecasts with 100 members was generated
using climatological rainfall parameters and a daily rainfall model that as-



sumed storms arrivals to be a Poisson process with exponentially distributed
intensities. While simple in nature, such a model has been used successfully
in previous soil moisture studies [37]. Daily rainfall depths were downscaled
to hourly values by assuming all rainfall occurs within a continuous four-hour
period randomly located within the day. Mean rainfall statistics during June
and July for locations within the SGP97 study area were obtained from the
Oklahoma State Climatology Service and rain gauge data collected between
1970 and 2001 at El Reno, Oklahoma (see Figure 1a).

4 EnKF results

Figure 5 illustrates the EnKF’s sequential assimilation of ESTAR Tz mea-
surements over the ARM CART EF13. The ensemble of TOPLATS/LSMEM
predictions was initialized by adding mean zero Gaussian noise with a stan-
dard error of 3% volumetric to initial surface soil moisture values derived
from ESTAR imagery on June 18 (Julian day 169). Between ESTAR over-
flights, an ensemble of TOPLATS runs, based on 100 separate realizations of
the Poisson/exponential rainfall model, was generated. At every observation
time, model states for each of the ensemble members were updated using ES-
TAR T measurements and equations (3) and (4). A standard error of 5°K
was assumed for all ESTAR T measurements. The updated states consti-
tuted a new set of ensemble members which were then propagated to the next
assimilation time by TOPLATS.

4.1  Point-scale results

Figure 6 illustrates the ability of the EnKF and remotely sensed 1.4 GHz
Ts measurements to correct errors in TOPLATS modeling results associated
with the use of climatological rainfall information at the ARM CART EF13
site. EnKF results are shown for updating with both local- (2.4%-km? res-
olution) and footprint-scale (50*70-km? resolution) ESTAR Tp observations.
Benchmark TOPLATS results are based on modeling with all available forcing
data - including gauge-based rainfall measurements. Open loop results are de-
rived from the average of 100 unupdated TOPLATS replicates generated with
the climatologically-based Poisson/exponential rainfall model. Since June and
July 1997 were exceptionally wet at the site, assuming climatological rainfall
levels generally underpredicts amounts of vertically integrated root-zone wa-
ter storage (fs0cm) and surface latent heat flux (AE). Even without any direct
rainfall measurements, updating members of the open loop ensemble with ES-
TAR T'g observations allows the EnKF to capture both the early dry portion
of the experiment (Julian days 169 to 177) and the impact of rainfall events
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during the very wet middle period (Julian days 177 to 185). The improved
representation of #40.m leads to more accurate \E predictions relative to the
open loop case during the early and middle portion of the experiment. EnKF
O10em predictions, however, drift relative to benchmark results during the gap
in ESTAR overflights between Julian days 184 and 192 and remain biased
high even after ESTAR measurements resume. The shortcomings of the EnKF
during this period are attributable to a high bias in LSMEM Tp predictions
during the final week of the experiment (see Figure 2) which causes the filter
to excessively wet the root-zone in an attempt to keep TOPLATS/LSMEM
T predictions low enough to match ESTAR observations.

EnKF results from the NOAA/ATDD Little Washita Basin site shown in Fig-
ure 7 are less encouraging. State predictions updated by the EnKF provide
only marginally better results than the climatologically-based open loop sim-
ulation. Some of the difficultly arises from a lack of ESTAR Tg observations
between Julian days 184 and 192 which prevents an appropriate response to
rainfall on day 185. However, EnKF 6,4., results are consistently biased low
even during an earlier period of near daily measurement rates between days
176 and 184. Despite relatively accurate TOPLATS predictions of surface soil
moisture, a persistent low bias in benchmark LSMEM 7T predictions exists
at the site (see Figure 3). This bias in predicted T causes the EnKF to
misinterpret ESTAR T observations and excessively dry the soil column. In
particular, the poor EnKF update on day 176 is due to a combination of this
bias and the large model uncertainty (i.e. ensemble spread in Figure 5) arising
from the ESTAR observation gap between days 171 and 176.

Somewhat surprisingly, EnKF results in Figures 6 and 7 demonstrate little or
no negative impact associated with upscaling ESTAR T’z observations from the
local- to footprint-scale. This lack of dependence on resolution suggests that
even coarse footprint-scale Tg retrievals have value for updating local point-
scale models. However, the limited scope of the comparisons does not exclude
other possibilities. For instance, the demonstrated value of the footprint-scale
observations could reflect the legacy of relatively large-scale precipitation pat-
terns encountered during SGP97 or simply attest to the regional representa-
tiveness of the two study sites.

4.2  Impact of ensemble size

Even under ideal conditions for application of the EnKF (i.e. linear model,
mean zero Gaussian observation and state errors) the EnKF will converge to an
optimal result only when the size of the ensemble is sufficiently large. It is im-
portant to quantify the benefits of enhanced EnKF performance, realized with
increased ensemble size, in the context of the additional computational costs.
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In a real-data case neither the true land surface state nor the exact measure-
ment process connecting land surface state variables to remote observations
is known. Consequently, evaluation of the benefits associated with increased
ensemble size is difficult. Our best guess of land surface state conditions is
given by TOPLATS/LSMEM results driven by gauge-measured precipitation
and validated against observed surface state variable and flux measurements.
These predictions are shown in Figures 2 and 3 and used as the benchmark
case in Figures 4 and 5. Table 1 outlines root-mean-squared (RMS) differences
between such benchmark values and results derived from EnKF analysis with
various ensemble sizes at the ARM CART EF13 site. Results are shown for
four soil moisture and two surface temperature state variables and are based on
the assimilation of local (2.42-km? resolution) ESTAR observations. While the
EnKF clearly improves model predictions relative to the open loop case, little
improvement is seen when increasing ensemble size between 50 and 1000. This
suggests that, for ensemble sizes > 50, alternative errors sources (e.g. measure-
ment biases, lack of model linearity, non-Gaussian error distributions) and the
shortcomings of the benchmark results themselves play a larger role than er-
rors arising from finite ensemble sizes. In contrast, results in [36] demonstrate
improved EnKF performance for ensemble sizes up to 1000. The larger range
of dependence in [36] is likely due to the much higher number of degrees of
freedom implicit in their horizontally distributed update procedure relative to
the one-dimensional case examined here.

4.8  Comparison to spaceborne radar rainfall and direct insertion results

A natural benchmark for EnKF results are TOPLATS predictions based on
rainfall times series derived from temporal sampling patterns consistent with
expectations for next-generation spaceborne missions designed to measure pre-
cipitation globally. Sparse (6-10 samples per day) sampling of precipitation by
spaceborne radar is generally considered to be a major source of error in
satellite-derived estimates of rainfall accumulations (see e.g. [41]). Assuming
rainfall rates to be temporally constant between sparse measurements can
lead to large errors in estimations of hourly rainfall rates and impact the ac-
curacy of land surface model predictions driven by spaceborne precipitation
observations.

Figure 8 addresses this concern by comparing the RMS accuracy of 6spcm
and AF TOPLATS predictions derived from a range of sparse sampling rates
to errors associated with the assimilation of local (2.4%-km? resolution) T
observations and purely climatological rainfall considerations. Comparisons
were made using a subsampling procedure on 15-minute rainfall gauge data
at the ARM CART EF13 site. For a daily sampling frequency of v, rainfall
rates were assumed content and equal to the observed 15-minute gauge-derived
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rate for the 242! hour period centered on each observation. The subsampling
exercise was repeated using every 15-minute observation in the first 24v~!
interval as the simulation start time. The resulting set of rainfall forcing data
was then used to force an analogous set of TOPLATS observations from which
error statistics in Figure 8 were calculated.

Since the actual integration time of each rain gauge measurement is 15 min-
utes, and not the nearly instantaneous snapshot provided by a satellite, rainfall
sampling errors in Figure 8 are likely conservative. Nevertheless, for sampling
rates expected in next generation global precipitation missions (6-10 observa-
tions per day), EnKF 640, and AE results driven by climatological rainfall
information and assimilated 1.4 GHz T's values are more accurate than results
derived from open loop strategies based on the sparse temporal sampling of
precipitation from space.

Results for the direct insertion of soil moisture values derived from ESTAR T's
imagery and the backwards radiative transfer model of [21] are also shown in
Figure 8 for comparison. As in the EnKF case, results for direct insertion were
obtained by running an ensemble of climatologically-derived rainfall realiza-
tions through TOPLATS/LSMEM. At each observation time, surface (5-cm)
soil moisture in each realization was set equal to the local ESTAR soil mois-
ture observation. All other model state variables were unchanged, and final
state variable predictions were obtained by averaging across the ensemble.

Such an integration strategy is generally considered suboptimal because it ne-
glects information generated by the model and updates only the single state
variable - surface soil moisture - directly observed by ESTAR. Large rainfall
events on Julian days 177 and 181 at the ARM CART 13 site, for instance,
recharge soil moisture levels far below the 5-cm surface zone. Direct insertion
updating is incapable of capturing such recharge and underpredicts subse-
quent levels of root-zone water storage at the site. Figure 8 demonstrates the
relative superiority of EnKF-derived root-zone soil moisture over direct inser-
tion results during SGP97. Due to wet conditions at the site, which minimize
the sensitivity of surface energy fluxes to soil water availability, the EnKF’s
advantage over direct insertion is very slight for AE predictions (Figure 8).

4.4 Footprint-scale results

For footprint-scale simulations, 800-m ESTAR T imagery was aggregated up
to the four footprint-scales shown in Figure 1b. TOPLATS/LSMEM predic-
tions for every one of the ~4,000 computational grid-cells within each footprint
were updated using these spatially averaged ESTAR T’z measurements and the
EnKF framework. For computational reasons, the ensemble size (i.e. number
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of model replicates) was reduced from 100 to 50. Ensemble replicates were gen-
erated using the same daily rainfall model as the site-scale analysis. Rainfall
realizations were independently generated for each of the four footprint-scale
pixels and rainfall intensities were assumed to be homogeneous within each
footprint.

A north-south gradient in rainfall accumulations developed during SGP97.
Rainfall levels in the northernmost footprint-scale pixel (the Central Facility
footprint) were several times larger than the climatological mean, while accu-
mulations in the southernmost pixel (the Little Washita footprint) were below
normal. Figure 9 illustrates the ability of the EnKF, driven solely by 7’z obser-
vations derived from the top 5 cm of the soil column and climatological rainfall
considerations, to resolve these deviations from expected rainfall levels. Dur-
ing the first half of the experiment, the EnKF is able to effectively reproduce
the impact of spatial rainfall anomalies by adding soil water to the root-zone
within the Central Facility footprint and removing water within the Little
Washita footprint. Capturing this spatial soil water pattern allows for the im-
proved prediction of surface latent heat flux within both footprints (Figure
10). However, as in the point-scale case, EnKF predictions are less accurate
following the temporal gap in observations between Julian days 184 and 192.
During the final week of SGP97, the EnKF does not outperform the open loop
simulations for either footprint-scale pixel (see Figures 9 and 10). Additional
study is required to determine if this is a direct consequence of the eight-
day observation gap or if it represents a more general drift in EnKF-derived
state predictions. Rainfall levels in the two footprint-scale pixels between the
Central Facility and Little Washita footprints (see Figure 1b) were near cli-
matological expectations. Consequently, assimilating Tz adds little to surface
state and flux predictions made with the open loop simulations.

5 Discussion and conclusions

Results illustrate both the challenges and potential benefits of using the EnKF
strategy presented by [36] to assimilate actual remote observations of surface
brightness temperature into a surface water and energy balance model. Clearly,
the assimilation process presented in the Section 3 does not meet all the re-
quirements for the EnKF to be an optimal filter. For instance, the method
used to generate TOPLATS replicates tends to produce skewed model ensem-
bles and a non-Gaussian error structure (Figure 5). In fact, several time steps
in Figure 5 demonstrate sufficient skew such that the ensemble mean falls
outside of the inner two quartiles of the distribution. Such non-Gaussian error
structure almost certainly has a negative impact on the EnKF’s performance.
In addition, not all sources of model and measurement error are implemented
within the ensemble generation procedure. Even if rainfall and 75 were mea-
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sured perfectly, model errors would still lead to differences between predicted
and observed Tz. Some of this error is attributable to model physics like the
neglect of bare soil evaporation beneath vegetation in TOPLATS and the
inability of the LSMEM to capture the impact of standing water on land sur-
face microwave emission. However, even in cases where model predictions are
relatively accurate, temporally persistent biases can arise from contrasts be-
tween the spatial support of model predictions and measurement footprints
[8]. This appears to be the case for point-scale results at the NOAA/ATDD
Little Washita Basin site where the misinterpretation of 7Tz observations by
the filter, combined with gaps in the time series of ESTAR Tg observations,
leads to the excessive removal of water from the soil column (Figure 7).

Ideally, all such error sources should be accounted for in an assimilation strat-
egy. However, while some description of model error and measurement bias
may be obtainable from either ground-based validation efforts or statistical
analysis of filter innovations, it is unlikely that a full description of model
error will be available in operational settings at large scales. As a result, no
attempt was made to correct EnKF predictions for the impact of model error
other than that arising from a lack of rainfall data. This was done under the
assumption that difficulties with spatial support, inaccurate model physics,
and measurement bias are an unavoidable part of attempting to compare and
combine model predictions with remotely sensed observations and should be
reflected in any realistic assessment of assimilation strategy merit.

Despite these challenges, results at the ARM CART EF13 site and over coarser
footprint-scales are encouraging. Root-zone soil moisture predictions made
with the EnKF, Ts observations approximately once every other day, and
climatological rainfall expectations at the ARM CART EF13 site are more
accurate than predictions derived from either direct assimilation of ESTAR
surface soil moisture imagery or predictions based on sampling rainfall rates
with temporal frequencies comparable to expectations for future spaceborne
radar precipitation missions (Figure 8). Even when hampered by no direct
rainfall information and constraints expected in next-generation spaceborne
remote sensors (i.e. 5-cm measurement depth and 50-km x 70-km horizontal
resolution), EnKF-assimilated ESTAR measurements are capable of repre-
senting the impact of spatially heterogeneous rainfall on root-zone (40-cm)
soil moisture along the SGP97 transect (Figure 9). Finally, these results are
obtainable with relatively small ensemble sizes (50-100) - suggesting that the
EnKF strategy is computationally competitive with other assimilation ap-
proaches.

The representation of rainfall and rainfall uncertainty utilized here is clearly
simplistic and not meant to represent current observational capabilities within
the SGP region. Rather, the purpose is to evaluate the potential of the EnKF
and remote measurements of 1.4 GHz Tz to compensate land surface model
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predictions for errors associated with a simplistic or inaccurate representation
of rainfall. More realistic assimilation approaches should take full advantage
of capabilities for observing and predicting precipitation at global scales. For
instance, of more use than a simple comparison of the relative advantage as-
sociated with measuring either 1.4 GHz T or rainfall at sparse sampling
frequencies, is a strategy for integrating both types of measurements in the
context of an assimilation strategy. One potential area for future study is using
an EnKF framework to facilitate this integration. However temporally sparse,
measurements from a spaceborne precipitation mission contain information
that can be used to condition the rainfall forecast ensemble, derived here from
purely climatological considerations, and improve the assimilation of surface
Tg measurements. Similar conditioning is possible using sparse spatial data
from rainfall gauge networks or quantitative precipitation forecasts derived
from regional weather prediction models. Finally, given that the operational
measurement of 1.4 GHz T from space is not expected before 2006, an impor-
tant extension of this work is the application of the EnKF to C-band (6.925
GHz) AMSR-E Tp observations expected in the near-future. The enhanced
impact of vegetation and atmospheric effects at higher C-band frequencies
poses an additional challenge for assimilation approaches.

6 Acknowledgments

The authors would like to thank Dennis McLaughlin and Dara Entekhabi for
their help during early phases of this research and Coral Fernandez-Illescas
for constructing the SGP97 forcing data set used for the TOPLATS simu-
lations. The data support of Tilden Meyers (NOAA/ATDD), Tom Jackson
(ARS/USDA), and the DOE’s Atmospheric Radiation Measurement Program
is also gratefully acknowledged. This work was supported by NASA grant
NAG5H-11111 and NOAA grant NA96GP0412.

References

[1] Brutsaert, W., Evaporation Into the Atmosphere, 299 pp., Dordrecht, Holland,
1982.

[2] Burgers, G., P.J. van Leeuwen, and G. Evensen, Analysis scheme in the
Ensemble Kalman filter, Mon. Weather Rev., 126:1719-1724, 1998.

[3] Burke, E.J., R.J. Gurney, L.P. Simmonds, and T.J. Jackson, Calibrating a soil
water and energy balance model with remotely sensed data to obtain qualitative
information about the soil, Water Resour. Res., 33:1689-1697, 1997.

16



[4] Choudhury, B.J., T.J. Schmugge, A. Chang, and R.W. Newton, Effect of surface
roughness on the microwave emission from soils, J. Geophys. Res., 84:5699-5706,
1979.

[5] Choudhury,B.J., T.J. Schmugge, and T. Mo, A parameterization of effective
temperature for microwave emission, J. Geophys. Res., 87:1301-1304, 1982.

[6] Choudhury, B.J., and S.B. Idso, Evaluating plant and canopy resistances of
field grown wheat from concurrent diurnal observations of leaf water potential,
stomatal resistance, canopy temperature, and evapotranspiration flux, Agric.
Forest Meteor., 34:67-76, 1985.

[7] Crow W.T., The Impact of Land Surface Heterogeneity on the Accuracy and
Utility of Spaceborne Soil Moisture Retrievals, Ph.D. dissertation, Dept. Civil
Environ. Eng., Princeton University, Princeton, NJ, 2001.

[8] Crow, W.T., M. Drusch, and E.F. Wood, An observation system simulation
experiment for the impact of land surface heterogeneity on AMSR-E soil
moisture retrieval, IEEE Trans. Geosci. Remote Sens., 39:1622-1631, 2001.

[9] Dingman, S.L., Physical Hydrology, 575 pp., Prentice Hall, Englewood Cliffs,
NJ, 1994.

[10] Dobson, M.C., F.T. Ulaby, M.T. Hallikainen, and M.A. El-Reyes, Microwave
dielectric behavior of wet soil - part II: Dielectric mixing models, IEEE Trans.
Geosci. Remote Sens., 23:35-46, 1985.

[11] Doriaswamy, P., A.J. Stern, and P.W. Cook, Classification techniques for
mapping biophysical parameters in the U.S. Southern Great Plains, Proc. Int.
Geoscience Remote Sensing Symp., IEEE Cat. no. 007803-4403, 862-865, 1998.

[12] Drusch, M., E.F. Wood, and T.J. Jackson, Vegetative and atmospheric
corrections for soil moisture retrieval from passive microwave remote sensing
data, J. Hydrometeor., 24:256-264, 2001.

[13] Entekhabi, D., H. Nakamura, and E.G. Njoku, Solving the inverse problem
for soil moisture and temperature profiles by sequential assimilation of
multifrequency remotely sensed observations, IEEE Trans. Geosci. Remote
Sens., 32:438-447, 1994.

[14] Evensen, G., Sequential data assimilation with a nonlinear quasi-geostrophic
model using Monte Carlo methods to forecast error statistics, J. of Geophys.
Res., 99:10143-10162, 1994.

[15] Famiglietti, J.F., and E.F. Wood, Multiscale modeling of spatially variable
water and energy balance processes, Water Resour. Res., 30:3061-3078, 1994.

[16] Feddes, R.A., and P.E. Rijetma, Water withdrawal by plant roots, J. of Hydrol.,
17:33-59, 1972.

[17] Feyen, J., C. Belmans, and D. Hillel, Comparison between measured and
simulated plant water potential during soil water extraction by potted ryegrass,
Soil Sci., 129:180-185, 1980.

17



[18] Galantowicz, J.F., D. Entekhabi, and E.G. Njoku, Tests of sequential data
assimilation for retrieving profile soil moisture and temperature from observed
L-band radiobrightness, IEEE Trans. Geosci. Remote Sens., 37:1860-1870, 1999.

[19] Hollinger, S.E., and C.S.T. Daughtry, Southern Great Plains 1997 Hydrology
Experiment: Vegetation sampling and data documentation, Report to United
States Department of Agriculture on Contract AG-58-1270-7-043, 1999.

[20] Houser, P.J., W.J. Schuttleworth, J.S. Famiglietti, H.V. Gupta, K.H. Syed,
and D.C. Goodrich, Integration of soil moisture remote sensing and hydrologic
modeling using data assimilation, Water Resour. Res., 34:3405-3420, 1998.

[21] Jackson, T.J., D.M. Le Vine, C.T. Swift, T.J. Schmugge, and F.R. Schiebe,
Large area mapping of soil moisture using the ESTAR passive microwave
radiometer in Washita ’92, Remote Sens. Environ., 53:27-37, 1995.

[22] Jackson, T.J., Southern Great Plains 1997 (SGP97) Hydrology Experiment
Plan, available online at: http://hydrolab.arsusda.gov/sgp97.

[23] Jackson, T.J., D.M. LeVine, A.Y. Hsu, A. Oldak, P.J. Starks, C.T. Swift, J.D.
Isham, and M. Haken, Soil moisture mapping at regional scales using microwave
radiometry: The Southern Great Plains Hydrology Experiment, IEEE Trans.
Geosci. Remote Sens., 37:2136-2150, 1999.

[24] Kirdiashev, K.P.,; A. A. Chukhlantsev, and A.M. Shutko, Microwave radiation of
the earth’s surface in the presence of vegetation, Radio Eng. Electron., 24:256-
264, 1979.

[25] Koster, R.D., M.J. Suarez, and M. Heiser, Variance and predictability of
precipitation at seasonal to interannual time scales, J. Hydrometeor., 1:26-46,
2000.

[26] Li, J. and Islam, S., Estimation of soil moisture profile and surface fluxes
partitioning from sequential assimilation of surface layer soil moisture, J.
Hydrol., 220:86-103, 1999.

[27] Mattikalli, N.M, E.T. Engman, T.J. Jackson, and L.R. Ahuja, Microwave
remote sensing of temporal variations of brightness temperature and near-
surface soil water content during a watershed-scale field experiment, and its

application to the estimation of soil physical properties, Water Resour. Res.,
34:2289-2299, 1998.

[28] Miller, D.A. and R.A. White, A conterminous United States multilayer soil
characteristics data set fo regional climate and hydrology, Earth Interactions,
2:1-15, 1998.

[29] Milly, P.C.D., and J. Kabala, Integrated modeling and remote sensing of soil
moisture, In: Hydrologic Applications of Space Technology (Proc. Cocoa Beach
Workshop, FL, Aug. 1985), TAHS Publ. 160, 331-339, 1986.

[30] Passerat de Silans, A., Transferts de masse et de chaleur dan on sol strateifi’e
soumis ’a une excitation atmosph’eriqgue naturelle. Comparison: Mod eles-
exp’erience, Ph.D. dissertation, Int. Nat. Polytech. de Grenoble, Grenoble,
France, 1986.

18



[31] Peters-Lidard, C.D., M.S. Zion, and E.F. Wood, A soil-vegetation-atmosphere
transfer scheme for modeling spatially variable water and energy balance
processes, J. Geophys. Res., 102:4303-4324, 1997.

[32] Rawls, W.J., D.L. Brakensiek, and K.E. Saxton, Estimation of soil properties,
Trans. of the ASAE, 25:1316-1320, 1982.

[33] Reichle, R.H., Variational Data Assimilation of Microwave Radiobrightness
Observations for Land Surface Hydrology Applications, Ph.D. dissertation,
Dept. Civil Environ. Eng., Mass. Inst. Technol., Cambridge, MA, 2000.

[34] Reichle, R.H., D. Entekhabi, and D.B. McLaughlin, Downscaling of
radiobrightness temperature measurements for soil moisture estimation: A

four-dimensional variational data assimilation approach, Water Resour. Res.,
31:2353-2364, 2001.

[35] Reichle, R.H., D.B. McLaughlin, and D. Entekhabi, Variational data
assimilation of microwave radiobrightness observations for land surface
hydrology applications, IEEE Trans. Geosci. Remote Sens., 39:1708-1719, 2001.

[36] Reichle, R.H., D.B. McLaughlin, and D. Entekhabi, Hydrologic data
assimilation with the Ensemble Kalman filter, Mon. Weather Rev., 130:103-
114, 2002.

[37] Salvucci, G.D, Estimating the moisture dependence of root-zone water loss
using conditionally averaged precipitation, Water Resour. Res., 37:1357-1365,
2001.

[38] Ulaby, F.W., K. Moore, and A.K. Fung, Microwave Remote Sensing: Active and
Passive (vol. III), Norwell, MA, Artech House, 1982.

[39] Wetzel, P., and J. Chang, Concerning the relationship between evapo-
transpiration and soil moisture, J. Clim. and Appl. Meteor., 26:18-27, 1987.

[40] Wetzel, P., and J. Chang, Evapotranspiration from nonuniform surfaces: A first
approach for short-term numerical weather predictions, Mon. Weather Rev.,
116:600-621, 1988.

[41] Wilheit, T.T., Error analysis for the Tropical Rainfall Measuring Mission
(TRMM), In: Tropical Rainfall Measurements, J.S. Theon and N. Fugano
(Eds.), 377-385, A. Deepak, Hampton, Va., 1988.

19



Table 1

Errors in EnKF soil moisture (f) and temperature (7') predictions for various en-
semble sizes at the ARM CART EF13 site. The transmission zone (6,) extends from
a depth of 40 cm to the top of the water table. Ty, s is the surface skin temperature
and T7 5cm is the 7.5-cm soil temperature. All error values are calculated relative
to a TOPLATS baserun simulation forced by gauge-based rainfall observations and
normalized by the error observed in the open loop case.

Ensemble Size Oscm  Oscm—15cm 015cm—40cm O, Tsurt  T7.5cm

50 0.87 0.81 0.59 0.46 0.45 0.92
100 0.88 0.81 0.53 0.36 0.50 0.93
200 0.87 0.81 0.53 0.31 0.52 0.91
500 0.85 0.80 0.52 0.35 0.49 0.89
1000 0.85 0.80 0.54 0.41 0.52 0.92
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Fig. 1. a) 800-m ESTAR brightness temperature image acquired on July 1, 1997 and
study areas where intensive soil gravimetric sampling occurred. The ARM CART
EF13 site is located within the Central Facility area and the NOAA/ATDD Lit-
tle Washita Basin site in the northeastern corner of the Little Washita Basin. b)
Aggregation of the July 1 Ts imagery into four 50-km x 70-km footprint-scale pixels.
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results are generated by TOPLATS with full WSR-88D rainfall information. Dotted
vertical lines indicate ESTAR observation times.

29



Central Facility Footprint

T T T ]
' — Baserun | p i
of . 42 EnKF A\l |
= 400_; . «—e Open Loop A\ : B
>
=
= 300
S
T
L /X WA N 28N
< 200w/ \\/ W\/: @&:@ @8
. RS
oo 1 SRRy | 2
169 173 177 181 185 189 193 197
Little Washita Basin Footprint
A
- i i — Baserun :
. i a—A EnKF
& 500
‘g - . e—e Open Loop
= Fa T
= 400
=
I L
= i
2 300 [
= :
o i
< :
3200 - /%
100 - ] s N

169 173 177 181 185 189 193 197

Julian Day 1997

Fig. 10. Baserun, EnKF assimilation, and open loop latent heat flux predictions over
the Central Facility and Little Washita footprints (Figure 1b). Baserun results are
generated by TOPLATS with full WSR-88D rainfall information. Dotted vertical
lines indicate ESTAR observation times. Plotted values are daily averages between
16 and 22 GMT (10 am and 5 pm CST).

30



